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Abstract

In this article a stress integration algorithm for shell problems with planar anisotropic yield functions is derived. The
evolution of the anisotropy directions is determined on the basis of the plastic and material spin. It is assumed that the
strains inducing the anisotropy of the pre-existing preferred orientation are much larger than subsequent strains due to
further deformations. The change of the locally preferred orientations to each other during further deformations is
considered to be neglectable. Sheet forming processes are typical applications for such material assumptions. Thus the
shape of the yield function remains unchanged. The size of the yield locus and its orientation is described with isotropic
hardening and plastic and material spin.

The numerical treatment is derived from the multiplicative decomposition of the deformation gradient and ther-
modynamic considerations in the intermediate configuration. A common formulation of the plastic spin completes the
governing equations in the intermediate configuration. These equations are then pushed forward into the current
configuration and the elastic deformation is restricted to small strains to obtain a simple set of constitutive equations.
Based on these equations the algorithmic treatment is derived for planar anisotropic shell formulations incorporating
large rotations and finite strains. The numerical approach is completed by generalizing the Return Mapping algorithm
to problems with plastic spin applying Hill’s anisotropic yield function. Results of numerical simulations are presented
to assess the proposed approach and the significance of the plastic spin in the deformation process.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Anisotropic material; Elastic—plastic material; Finite strain; Shells

1. Introduction

In the plasticity related literature some articles consider whether or not the plastic spin has to be applied
for a correct formulation of stress rates (see e.g., Haupt and Tsakmakis, 1986; Simo, 1988; Lubarda
and Shih, 1994; Dafalias, 1998; Van der Giessen, 1991). Following the investigations in Haupt and
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Tsakmakis (1986), the plastic spin in this presentation is not applied for the description of the stress rates;
the convective (Oldroyd, 1950) rate is used instead. The plastic spin is, however, applied to describe the
evolution of the directions of the anisotropic yield function.

Such reorientations of the anisotropy axes can be easily motivated by observing the plastic deformation
of single crystals, where the active slip planes rotate with the plastic deformation, while the material spin
may be zero (see e.g., Asaro, 1983). The reorientation of anisotropy axes of a polycrystal can be understood
as the mean rotation of the single crystals in a polycrystal aggregate. From experimental results in the
literature it could be concluded that the plastic spin can be neglectable for polycrystalline aluminum since
maximal rotations of up to 5° at 20% strain have been reported in Bunge and Nielsen (1997) and Truong
Qui and Lippmann (2001). For mild steel this seems not be valid—maximal rotations of up to 45° at 10%
strains were observed in Boehler and Koss (1991) and Kim and Yin (1997).

Although the reorientation of anisotropic directions seems apparent for steel sheet metals, proper
computational treatments for practical applications particularly in sheet forming processes are quite rare.
Different approaches to describe the anisotropy direction can be found in the literature. Loret (1983), Lee
et al. (1995), Steinmann et al. (1996) and Dafalias (1998) used structural tensors to define the anisotropy
directions. A different description has been applied in Yoon et al. (1999) and Tugcu and Neale (1999),
where motivated from rigid-plastic formulations (see Yang and Kim, 1986; Chung and Shah, 1992), the
orientation of the yield function remains directly expressed by its directional material axes. These formu-
lations can also be derived in a multiplicative setting as exposed in Han et al. (in press). Based on this
formulation an algorithmic treatment for shell problems incorporating kinematic hardening has been
presented in Han et al. (submitted).

In this paper an algorithmic treatment for FE-shell formulations incorporating the plastic spin is pre-
sented. It is assumed that the strains inducing the anisotropy of the pre-existing preferred orientation are
much larger than subsequent strains because of further deformations. The change of the locally preferred
orientations to each other as a result of further deformations is considered to be neglectable (see Hill, 1950).
Sheet forming processes are typical applications for such material assumptions. The derivation of the al-
gorithmic treatment is achieved on the basis of the multiplicative decomposition of the deformation gra-
dient and thermodynamic considerations in the intermediate configuration. A common formulation of the
plastic spin, first suggested in Zbib and Aifantis (1988), completes the governing equations in the inter-
mediate configuration. These equations are then pushed forward into the current configuration and the
elastic deformation is restricted to small strains to obtain a simple set of constitutive equations. Based on
these equations the algorithmic treatment is derived for planar anisotropic shell formulations incorporating
large rotations and finite strains. To this aim the Return Mapping algorithm is generalized for material
models with plastic spin and Hill’s (1950) anisotropic yield function. The results of numerical examples are
presented and discussed to assess the proposed approach.

2. Material formulation
2.1. Clausius—Duhem inequality

The generalization of the additive decomposition in the small strain case to finite strains is commonly
motivated by the structure of the single crystal model for metal plasticity (Lee, 1969), and shall be stated
here as F = F.F,. The resulting kinematic relations and stress and strain expressions related to the inter-
mediate configuration # are listed in Table 1. These expressions will be used to formulate the Clausius—
Duhem inequality in the following.

The stress power % per unit reference volume is described by #" = S - E = t - d, with the second Piola—
Kirchhoff tensor S, the Green—Lagrangian tensor E = (1/2)(F'F — 1) defined in %, and their counterparts
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Table 1 .
Kinematic relations and stress/strain-expressions in 4
Multiplicative decomposition F =F.F, (46)
Velocity gradient 1=1+F.LJF," (47)
with 1. =FF,' and L, = F,F," (48)
Plastic velocity gradient Ep = ﬁp + Wp (49)
with D, = (L) and W, = (L,), (50)
Lagrangian strain tensor E= %(FeTFe - F;TF;I) =E.+E, (51)
with E. =i(FF. — 1) (52)
and E,=1(1-F,"F") (53)
Second Piola—Kirchhoff stress S= F, I‘EF; T (54)
Mandel stress P=(1+2E)S=CS (55)
Oldroyd rate for strain like tensors (_)5 =)+ f:(.) + ()L, (56)
Oldroyd rate for stress like tensors (.)5 =()- fp(.)A _ (.)f; (57)

in 4 as the rate of deformation tensor d = (1/2)(1+1") and the KirchhofT stress tensor t = det(F)s. The

stress power in the intermediate configuration % can be reformulated as
— —A
W =S -E, (1)

with S defined by (54) and the Oldroyd derivative (56) of E defined by (51) (see Haupt and Tsakmakis,
1986). The Clausius—Duhem inequality for isothermal processes can be stated as # —y > 0 with the
specific free energy function . This inequality can be expressed by

S E'-y>0 )
in the intermediate configuration.

An additive split of the free energy function is assumed /(¢) = V. () + 1, (¢), with the elastic part i, to be
isotropic and dependent on F.. The time derivative of i, is given with , = (0, /0E.) - E., which yields,
with S—A: 0y, /OE, and the plastic part of the Oldroyd derivative of the Green—Lagrangian strain tensor
D, = E; to the reduced form of (2),

7 =P -Dy—y, >0, 3)

where & denotes the local internal dissipation function (see Han et al., submitted for details).

2.2. Evolution of plastic rate of deformation and hardening

Anisotropic yield functions shall be incorporated in the proposed material model. Within this approach
their orientation will be described with directional axes é}b, i=1,2,31in % (see Fig. 1) which may evolve in
the deformation process. We assume that the strains inducing the pre-existing preferred orientation are
much larger than subsequent strains due to further deformations. Sheet forming processes are typical
applications for such material assumptions. The change of the locally preferred orientations to each other

during further deformations in such processes is considered to be neglectable (see Hill, 1950 or Kim and



5126 C.-S. Han et al. | International Journal of Solids and Structures 39 (2002) 5123-5141

Fig. 1. Rotation of the directional axes of the anisotropic yield function.

Yin, 1997). The evolution of these orientations of the anisotropic yield function is related to the spin @ to
be described in Section 2.3.

The isotropic plastic part of v, is assumed to be dependent on a strain-like variable «. The thermo-
conjugated variable to « is commonly defined with ¢ = —0y, /0o, which is of scalar stress type and describes
the current yield strength. The time derivative of the isotropic part of the plastic free energy function is then
simply stated by ¥, = —qa. The evolution equations are derived on the basis of the local internal dissi-
pation function (3) which can be written as

2 =P -D,+qa>0. (4)

The yield locus @ is considered to be convex and to be defined in 4. If the yield function is anisotropic
the orientation of the yield function is presumed to be defined by the axes of anisotropy é?’. This yield
function is defined to have the deviatoric part of the Mandel stress tensor P and the internal stress like
variable ¢ as its arguments

¢ = o(P" gie)) = $(P 1) + 4 = 0. (5)
Applying the postulate of maximal dissipation, the model of associative plasticity is obtained by solving

= =%, = P

P—P)-Dy+(q—¢7)a=>0 (6)

for all (P*,¢*) € E = {(P,q)|$(P; &) + g <O}. This yields the evolution equations

(@)X Ne)]
"U|“S-\

ﬁp =9 ’ (7)

&=7 (8)
and the Kuhn Tucker conditions 7 > 0, <0, y& = 0 for the solution of this restricted optimization
problem. The consistency parameter y can be viewed in the context of a restricted optimization problem,
stated with (6), as a Lagrange multiplier. To ensure the symmetry of D, the derivation of the yield function
¢ with respect to P has to be symmetric, which is assumed here. This holds for commonly used orthotropic
yield functions as formulated by Hill (1950) if the yield function is written in terms of the Mandel stress
tensor instead of the original Cauchy stress tensor.
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By introducing the increment of the plastic arc length § the consistency parameter can also be described

as j = §/p with § = \/%Hﬁpﬂ and = \/% a";H.

oP

2.3. Evolution of the directional axes

The definition of the intermediate stress-free configuration 2 is not unique because a rigid body rotation
of this configuration results in the same deformation gradient. To define its orientation an interpretation of
the multiplicative decomposition in the context of crystal plasticity is given, e.g., in Asaro (1983). Here we
choose without loss of generality the elastic part of the deformation gradient to be symmetric, as applied
also in Lee (1969) or Boyce et al. (1989). With this decomposition the plastic part of the deformation
gradient F, = R.F, = Ry U, describes the plastic shearing as well as the lattice rotation (see Fig. 2). Thus
we arrive at

F = F.F, = V.R,U,. 9)

Generally arbitrary approaches can be applied for the development of the anisotropy axes without vi-
olating the thermodynamic restriction (3). Although W, does not enter the local dissipation function &, it is
known that for crystals the plastic strain rate D, and the spin in single slip are directly coupled. In general,
the spin should be considered dependent on the parameters describing plastic flow and on material
properties like the mean orientation of the grains of a polycrystal. To formulate such a dependency the
antisymmetric part of the plastic velocity gradient (L,), = W, relative to 4 is decomposed as

W, =0+, (10)

where, referring to Dafalias (2000), W, is denoted as material spin, @ZJ as constitu@;}e spin, and ﬁﬁ as
plastic spin. The description of the rotation of the digegtional axes Ry is related to @, = R¢R£ which is
implicitly defined by the objective plastic spin tensor Q.

Heuristic descriptions for € have been proposed by several authors (e.g., Dafalias, 1985; Van der
Giessen, 1991; Kuroda, 1997). A common description of the plastic spin would correspond to

_4) — [
Q, = u’(PD, — D,P) (11)

in the intermediate configuration, where the variable u? can be a nonlinear function in P, D, and €’ and
may also change its sign within the deformation process. For rigid plastic materials (11) was derived in

F, = R,U, F* =V,

7

Fig. 2. Multiplicative decomposition by F = F.F, = V.R,U,,.
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Table 2
Evolution and spin equations in %
Evolution equations —~ 04
q D, = y—?
)
i=7
Plastic spin ﬁ;f = u’PD, — D,P)

Levitas (1998) on the basis of stability considerations. Physically this means that the plastic spin is present
as long as P and ﬁp are not colinear. In the context of the maximal plastic dissipation, the plastic spin will
rotate the anisotropy axes into a more favorable energetic direction.

For u® in (11) a simple approach has been suggested by Kuroda (1997)

= e/, (12)

with a material constant ¢x and ¢ representing the yield stress. A comparison of such an approach with
experimental results, exposed in Kim and Yin (1997), has been discussed in Dafalias (2000) and yielded
qualitatively good predictions of the rotation angles. The determination of the rotations of the anisotropy
axes of the considered pre-stretched mild steel is performed by parameter fitting with respect to Hill’s yield
function (1950) yielding rotations of up to 45° in Kim and Yin (1997) at 10% strain. Similar results were
obtained earlier in Boehler and Koss (1991) where it was also observed that the symmetry axes of the
crystallographic texture rotate in about the same magnitude as in macroscopic tests of the steel sheets.
Micromechanical investigations of aluminum sheets have been described in Bunge and Nielsen (1997)
where the spin is understood as an averaged rotation of the symmetry axes caused by the rotating single
crystals in the plastic deformation. The rotations of the symmetry axes are determined by texture de-
scription via Oriental Distribution Functions (see Bunge, 1982). Maximal rotations of only up to 5° at 20%
strain were observed with this procedure. These values were also obtained by Truong Qui and Lippmann
(2001) using macroscopic testing. Thus, for aluminum polycrystals the plastic spin appears to be of minor
importance. From experiments (Boehler and Koss, 1991; Kim and Yin, 1997; Truong Qui and Lippmann,
2000) this is, however, not valid for steel. For steel sheets the plastic spin should be incorporated into the
material description.

With the description of the plastic spin the formulation referred to the intermediate configuration # is
complete. The governing equations have been summarized in Table 2.

2.4. Transformation to the current configuration %

The evolution equations formulated in the previous subsection describe all needed rates to describe the
material formulation. However, one could consider a formulation in the nonphysical intermediate con-
figuration disadvantageous because the yield function is defined in the stress free configuration 4. Common
yield functions, as in Barlat et al. (1991) and Hill (1950), are also all naturally defined in the current
configuration 4. For an outline of the results obtained so far the transformation into 4 will be given in the
following.

The Kirchhoff stress tensor t can be derived from S = V_'tV_"! and (55), and yields t = V_'PV,, which is
symmetric because V. is coaxial to P for elastic isotropy and yields T = P. A corresponding push forward
transformation of D, (7) into the current configuration yields

A S o
d, :%V;‘a—ng‘. (13)
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Although t and P are identical for the considered case of isotropic elasticity the yield functions are not
identical in the intermediate ¢ and in the current configuration ¢. The yield function is defined with the axes
of anisotropy transferred to % which change with V.. It has to be observed that the axes of anisotropy g?’ in
% are no longer orthonormal since they transform via g, = Vee and now obey b, ' as metric. Hence, the
spin defining the evolution of g, has to be described with V. and its rate.

With these considerations an evaluation of the stresses in terms of the intermediate configuration % in
the previous subsection will be easier to deal with and more advantageous because all relevant physical
terms can easily be pushed forward with V. to 4. Recalling, however, that in most problems in metal
plasticity the elastic strains can be considered to be small, the difficulties involved with such a formulation
in % can be circumvented by confining the regarded problems to these cases.

Remark. We should emphasize here that d in (13) should generally not be identified with the plastic rdte of
deformation referred to %, defined by p = (Ip)s, which can be easily seen by dp =V.'D,V,' #
(V.L,V.Yg = (1 - L)g = (I,)s = d,. With the Almansi strain tensor e = (1/2)(1 —F "F ') the push “for-
ward transformation in (13) can be viewed as the Oldroyd derivative of its elastic e, = (1/2)(1 — V,'V_")
and plastic strains e, = (1/2)(V,'V,! —F TF"! ) (see Haupt and Tsakmakis, 1986). Eq. (13) then sim-
ply states the push forward trdnsformdtlon d —e =V.'D,V.' from the intermediate to the cur-

rent configuration, since Ep = D,. The Oldroyd derlvatlve relative to % for e, is thereby defined by (. ) =

() +170) + (L

Small elastic strains. In the following we restrict ourselves to small elastic strains, i.e. F. = V. =~ 1 + 0(s.),
framing a good approximation for a large range of problems in metal plasticity. This restriction yields the
different plastic deformation rates to be approximately identical d =D, = d,; and likewise the stress re-
lations for small elastic strains can be stated by t =S = P. For the d1rect10na1 axes we obtain

e =, (14)
remaining perpendicular to each other because R, ~ R = FU~'. With the Kirchhoff stress tensor now
directly related to the Mandel stress tensor and (14) the flow rule (7) can be written as

a, :y-f;_‘f’, (15)

where we can identify j as y = §/f with f = \/ H H and § = \/ |ld,||. With the definitions of the elastic and
plastic strains (51) in 4 and the Oldroyd rate, (15) motivates the additive relation d. = d — d,,. The relations
for the isotropic hardening (8) remain obviously unchanged.
The plastic and constitutive spin relative to the current configuration % simplifies to
o/ =0 and 0' =0 (16)

p p’

which consequently results inw = W, and w = 0" + coﬁ for the material spin. Therefore, in the case of small
elastic strain, the total spin is identical to the material spin of the intermediate configuration.
The governing equations relative to % confined to small elastic strain are summarized in Table 3.

Table 3
Evolution and spin equations in %4 for small elastic strains
Evolution equations d — . 0¢
=73
i=1

Plastic spin of = ¢ (td, — dy1)
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3. Shell kinematics

A finite element formulation of the shell continuum is considered to be applicable to structural problems
with finite rotations and large strains. An arbitrary point in the deformed shell space is determined by
x(&,E,0) = @(&", &) + (&', &), where @ denotes the shell mid-surface and t is an inextensible director of
unit length. The curvilinear base vectors tangent to &E ¢ are given by

g1 =@y +Ctm ) and g3 = tv (17)

where o = 1, 2. A strain measure, with respect to the reference configuration, is provided by the right
Cauchy-Green tensor C, with C;; =g, -g;, i,j = 1,2,3 being the covariant components of C. The right
Cauchy-Green tensor C can be split into membrane (m), shear (s) and bending (b) parts, yielding
C = C™ + C° + {C". The quadratic terms in { are neglected due to the thin shell limit. The relevant com-
ponents of the different parts of C can be written as

C;n[)’ = QP55 C;} =2 ?, -t and Csﬁ =@y taﬁ +(Paﬂ L (18)

Several parameterizations of the director t can be found in the literature. An inextensible director for-
mulations is applied here, incorporating the classical assumption S3; = 0. Such formulations frame a good
approximation widely applied for nonlinear shell problems (e.g., Wagner and Gruttmann, 1994; Haupt-
mann and Schweizerhof, 1998). With the additional condition that the shear strain E,; is small, we arrive at
the Kirchhoff shell theory. This model can be approximately achieved with a penalty constraint for E,3, as
has been done in Eberlein and Wriggers (1999) and Han and Wriggers (2000), or by assuming a linear
relation S,3 = GE,; with the shear modulus G used in other descriptions. Thus all relevant components for a
material description of (18) are contained in Cj; and Cﬁjﬁ.

4. Algorithmic treatment

The deformation gradient F = Gradx(X) = ", g, ® G', with g; defined by (17) in the current and G’ in
the reference configuration, is not fully incorporated into the material law of the considered shell formu-
lation. The penalty formulation and sequential treatment of the integration of the transversal shear terms
do not accurately satisfy the Kirchhoff condition, C,; = 0, through the thickness, and are not considered in
the material equations. The deformation gradient is therefore considered here in the form

F=Y g oG (19)

To link the spin w (16) to the evolution of the directional axes of anisotropy ef the corotational rate of
the axes can be considered
e/ =e 0%l =0, (20)
(see, e.g., Dafalias, 1998). These axes of anisotropy e may be updated via an incremental orthogonal
transformation Ry, corresponding to 0°As, where R, has to satisfy R, = 0”R, and R,(¢) = 1. For an
application within an algorithmic treatment, e,‘-/’ can be updated by

t+Atej> — t+A’R¢’e?. (21)
In the case of a purely elastic increment the plastic spin is identical to the zero matrix wg’ =0, and hence
0” = w = RR". Also, R, in (21) may be identified by "R, = “#AMRR™! in a total Lagrangian formulation,

and simply by “"“R, = ""*R in an updated Lagrangian formulation. The first two columns of the right
rotation tensor are therefore obtained by Rj3,, = F3X2U2‘X12, where Uz_xl2 is obtained by U> = C = F'F. The



C.-S. Han et al. | International Journal of Solids and Structures 39 (2002) 5123-5141 5131

third term is determined by the cross-product of the first two columns, or, considering the orthogonality of
R, stated by R"R = 1. In the case of plastic loading and mﬁ # 0, the plastic spin mﬁ also effects the update of
the directional axes, and henceforward Ry in (21). Its algorithmic treatment will be described in the fol-
lowing subsections.

The anisotropic yield function ¢ is explicitly expressed with the anisotropy axes e?. A quadratic de-
scription of the Hill (1950) yield function, for example, can be formulated as

1
¢ = 5T Kr, where K=K’ ® eﬁ el ® efj’ (22)

in the plane stress state. To complete the yield criterion the isotropic hardening shall be given as

7= +5)" (23)
with &, ¢*° and #*° being material parameters. & and &, shall be called the equivalent yield stress and the
initial strain to yield, respectively. In the chosen notation (g, ) for the isotropic hardening & can be
identified with ¢ and &, with § = y/2||d,||.

Stress update algorithm. Because the plane stress condition is assumed the stress and strain tensors can be
defined in a 2 x 2 vector space. As a starting point the incremental deformation gradient F—mapping %, to
AB,.1—, the strain increments Ag = dA¢, and the variables t”, &, &, eZ’" from the previous load step n are
assumed to be given. A

It is first assumed that no Aplas‘[ic loading is present. Therefore Ag, =d,Ar =0 and ©f = 0fAr=0

are valid yielding the relations 0° = 0°Ar = wAr = w. With (21) the directional axes of the yield function ¢
A

are updated with an orthogonal transformation Ry corresponding to 07
trial ial _¢"
e/ = R;" e (24)

which defines the trial orientation for the anisotropic yield function. Thereby Rgial is defined with Rgi"‘l =R
in an updated Lagrangian setting.

For the stress update algorithm, within a time increment with fixed directional axes, we consider the
stresses to be given at the time or load step n, and the total strain increment at loadstep » + 1. To be
determined are the stresses t and the plastic strain increment Ag, at n 4 1. The stresses at n + 1 can be
written as

U =FUF + AT (25)

which correlates to the Oldroyd derivative for stress like variables (.)" = (.) — 1(.).— ()17, identical to the
Lie-derivative defined as L,(.) = F[2 (.)JF" in an updated Lagrangian setting (see Simo and Hughes, 1998;
Oldroyd, 1950). With Ae = dA¢ the stress increment yields

At = C.(Ag — Ag,), (26)

where Ag is described in Simo and Hughes (1998) as Ae = e = (1/2)(1 — F'F') identical to the incre-
mental Almansi strain tensor. By setting Asgial = 0 the trial stress increments are obtained as

At = C, Ae (27)

or, equivalently, the total trial stresses as t? = Ft"F' + C.Ag"*". The trial value for the stress-like internal
variable describing the isotropic hardening are set to

qtrial _ qn ) (28)
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The constitutive equations are performed in the plane stress state defined in the tangential coordinate
system of the shell. In order to remain in a two-dimensional coordinate system it may be helpful to for-
mulate the relation (25) relative to the referential coordinate system e?’, written as

U‘C”UT + AAn+1 (29)

The stress tensor in the current basis eg_’"“ is then recovered by 1 = RtR". The coefficients of the tensor t,
however, do not change if the basis is corotated with the deformation (see Bathe, 1996; Yoon et al., 1999, or
Han et al., submitted). Correspondingly,

A¢=RTAsR=}(1-C") (30)

is obtained for the strain increments and (26) and (27) remain valid if t and € are understood in the sense of
a matrix notation.

(E) Elastic loading. If the yield condition is fulfilled with these trial values
(Dtrial — @(‘C trial7qtrial; efm“l) < tol (31)
the load step n + 1 is considered to be elastic and hence d, = ©? = 0 and

- n+1 trial
tn«H _ Ttl‘ldl q qll‘ld] ef _ eZJ (32)

)

and we can proceed to the next load step n + 2. Otherwise, if the tolerance is exceeded in (31) we continue
with the following step (P).
(P) Plastic loading. In the case of plastic loading @™ > 0 the plastic strain increments are obtained by pro-
jection of the trial stresses to the current yield surface by

=1~ C,Ag,. (33)
This projection is approached incrementally, and for each iteration state i the plastic increments are

defined by the incremental form of the associated flow rule

i i ad)l

and by the corresponding increments of the isotropic hardening

Aqi — A'))lnlsoclso(go + Ei_))nmi]

a0 (35)

With ¢' = ¢! + Ag' all stress-like variables t and ¢ are now expressed in terms of Ay. Thus Ay can be
determined solving the condition

P(t(Ay),q(Ay)) =0, (36)

with a Newton iteration Ay"! = Ayl — &' /(0 /OAy). Herein &' is expressed with ¢' and K' = [, 55,6/ ®
e,j ® eb ® e‘” Details of the derivation (0¢/0Ay) may not be trivial but are straightforward and omltted
here for breV1ty Missing, however, is a description of how e? is updated. This will be shown in the
following under (U).

(U) Update of e?. The directional axes of the yield function rotate in general according to 8% = w — mﬁ and

(21). An incremental form can be written as
A A
0 =w— (x)g’ ) (37)

where the increments of the plastic spin can be expressed with the incremental plastic strains as
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ufﬁ = 1’ (tAg, — Ag,r) (38)
and the increments of the material spin tensor w are determined by the increments of the velocity gra-
dient 1 = FF ! as ?A: At~ AFF' = (F—1)F ' = lA— F'. "l;his yields the increments in the material
spin W= (1/2)(1 —1"). To each of the increments vAv, o?, and 0’ the rotation tensors R, R, and R, can
be introduced, and their relation to each other is then formed by subsequent rotations

R, =R',R. (39)

w?

The material rotation R is already contained in ef"i“l = Ref". The rotation remaining in the elasto-plastic
routine is applied by the inplane rotation R,s within the tangential plane, where the constitutive
equations are defined as

e;/’"‘] =R/, a=1,2 (40)

PV

and the third direction remains unchanged.
The algorithmic steps are summarized in Table 4 for clarity.

Remark. Relation (39) can be easily verified in the planar case. The axes of anisotropy e? are updated by an
orthogonal transformation R,, corresponding to 0?A¢. For the determination of this rotational tensor we
consider the following expression of (20)

—sind|; | 0O 1f|cosd| |0
[cosﬁ }9_012[—1 O}{sinﬁ]_[oy (41)
A
where e/ shall be determined with the angle ¥. Eq. (41) yields ¢ = —0, and, henceforward with AY = —07,,
the rotation

Table 4
Algorithmic steps

Input: F, ©", &, el
. trial
e Compute Ag"t!, tiridl | ¢
e Evaluate @ with K™ = [K,5,€?
(E) if @ < tol then
1 qtrial g+l _ el atrial
tn+‘ — glria s sg+ — 8;, ef — e;m
(P) elseif @ > tol then
KO _ Ktrial AVO — (. 10 = gtrial Ag0 @0
) , , A,
do i =0, inax
compute
o
* oy ) o
o Ayt = Ay — @'/ L
o T Agit! via (33), (34), and A&,
e R, via (38)
ol =R, el
o K*!
o Pt
o if ¢! < tol then

bl il gl ikl gt ¢!
T =TT, =g, e =e¢

trial

® ez)mdl ® e?mm ® ef{’ml

return
end if
enddo
Output: 7', E;*', ef"”




5134 C.-S. Han et al. | International Journal of Solids and Structures 39 (2002) 5123-5141

_|cosAY —sinAd |  _r
R= sinAd  cosAY | Ry (42)
1s obtamed All antisymmetric tensors can be expressed as R, in (41) which yields with (38), 94’12
— w‘l’pl, Proper orthogonal tensors can be represented in the 2D case by (42) and an additive relation of
rotatlon angles results in a multiplicative relation by trigonometric transformations.

5. Numerical examples
5.1. Uniaxial stretching

To assess the performance of the derived stress-update algorithm the uniaxial stretch tests investigated in
Dafalias (2000) and Kim and Yin (1997) are considered. Rectangular samples are cut from a larger sheet in
the angles 30°, 45°, and 60° from the rolling direction, and stretched along these directions. An analytical
solution for rigid-plastic material, incorporating plastic spin and Hill’s yield function without any hard-
ening, is presented in Dafalias (2000).

The material parameters used for the simulation with the proposed algorithm are taken from the pre-
stretched mild steel described in Kim and Yin (1997), and are given in Table 5. The definition of Hill’s yield
function is thereby described via

=vt-Kt—+/2/3q, (43)
where t and K are understood as matrices defined as
T11 2 1 —ﬂlz 0
T= |2 and K = 3 —Bi  Bn 01, (44)
T]z 0 0 ﬁéé

with respect to the anisotropy directions ef.

Tensile stretch tests of strips cut from a large sheet in the angles 30°, 45°, and 60° to the rolling direction
are considered to compare their results of the experiments (Kim and Yin, 1997), the analytical solution
(Dafalias, 2000), and the algorithm are compared in Fig. 3, where about 2200 time steps have been applied
for the algorithmic solution. These and all following simulations are performed with explicit FEM algo-
rithms. The results of the analytical and algorithmic solutions are shown for different values of cx, namely
—100, —200 and —300. Because the material model of the algorithm also incorporates elastic strains,
the results of the algorithmic and the analytical solution cannot be identical, a priori. But, as can be seen in
Fig. 3, there are only minor differences between these solutions.

For the angles 30° and 60° a value of ¢y = —100 to —200 in (12) would fit the experimental best, for the
angle 45°, however, a value of ¢y = —300 would be more appropriate. To obtain a better agreement with
the experimental data with one single parameter for all three cases a simple modification of u? in (12) is
suggested by introducing the minimum angle ¢ € [0°,45°] between any of the anisotropy axes e/ and the

Table 5
Material parameters
Young’s modulus E =206 GPa
Poisson’s ratio v=203
Initial yield stress 7, = 107.06 MPa
Hill’s 1950 yield function f1o = 0.58373, f,, = 1.00919, B = 2.3550

Isotropic hardening Ciso = 544 MPa, n;, = 0.25
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Fig. 3. Rotation angle ¢ between eg’l and e? (see Fig. 1) versus strain using (12) with cx = —100, —200, and —300.

principal axes n} of the rate of deformation tensor d, =3, i;ng @ n. With this angle the spin description
(12) is modified to

= C(: tan(9). (45)

With this description (45) of u? the anisotropy axes of the strip cut in an angle of 45° from RD will spin
with the same rotation rate as the strip cut in the angle of 30° after the anisotropy axes of the 45° sample are
parallel to those of the 30° sample in its initial state. The results of this approach for the tensile stretch test
in the directions 30°, 45°, and 60° are presented in Fig. 4 using one single material parameter ¢® = —350.

In Fig. 5 the flow stress obtained by ®? = 0 and the descriptions denoted in (12) with cx = —100 as
suggested in Kuroda and Tvergaard (2000) and (45) with ¢® = —350 are presented. Only the calculations
for the angles 0°, 30°, and 45° are illustrated, the results for 60° and 90° are almost identical to 30° and 0°
since f3,, is with its value 1.00919 very close to f#;; = 1.0. As can be seen in Fig. 5 the differences between the
description (12) and (45) are of some significance for strains of 0.015-0.005. For larger strains the differ-
ences are rather minor. The differences in the flow stresses with or without a spin description are, however,
of considerable magnitude. For processes where the loading direction is frequently changed a good
agreement of the anisotropy directions in the deformation process could be of importance. In this regard it
should be noted that by using additional parameters in (45), e.g., u? = (c?/¢){tan™ () + n,}, an even
better fit of the experimental data could be achieved.

0
a5

experiment ¥
-350

1 1 L L
0 2 4 6 8 ]0%%

Fig. 4. Rotation angle ¢ between e? and ef versus strain using (45) with ¢* = —350.
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Fig. 5. Flow stress with @ = 0, (12) with cx = —100, and (45) with ¢¢ = —350.

5.2. Square Cup drawing

For simulation of an applied problem, the Square Cup drawing benchmark of NUMISHEET93
(Makinouchi et al., 1993) is considered. An initially square blank, with dimensions of 150 mm by 150 mm
and a thickness of 0.9 mm, is formed by the usual punch, die and blankholder constellation. All tools are
modeled as rigid surfaces. The edge-length of the punch is 70 mm and rounded at the corners with a radius
of 10 mm. The geometry of the die is defined by a square hole, 74 mm by 74 mm, also rounded at the
corners with a radius of 12 mm. The vertical blankholder force is given as 1.75 KN and the friction between
the sheet and die, and sheet and punch, is ¢ = 0.1. The punch is moved to Upynen = 24 mm after the first
contact with the sheet. As plastic spin parameter ¢ = —350 is chosen as before. For comparison, the results
of the simulation without plastic spin are also shown. The rolling direction is assumed to be parallel to one
edge of the sheet. The symmetry conditions are still valid for this problem because the plastic spin can be
considered to be zero along the lines of symmetry. Only a quarter of the structure is thus discretized with
50 x 50 elements and 25 integration points through the thickness are applied.

The punch load versus punch travel is shown in Fig. 6 (left). The forces needed for the punch travel with
plastic spin are about 10-15% smaller in the final load steps. The contours of the deformed sheet are,
however, about the same (see Fig. 6 (right)). This should not be surprising, because the deformation is
mainly controlled by the punch travel which allows little space for variations. As can been seen in Fig. 7,
where the equivalent plastic strain g, of the simulations with and without plastic spin are plotted, the
differences in &, are rather minor. While there is little differences in the deformation of the sheet the dif-
ferences in the stresses, however, are worth noticing. The von Mises stresses, presented in Fig. 8, with plastic

F Thh e 80 T

15000 W
I 70
AR L

12000 r/(‘ 60
v 0 -
9000 Vi 50 350 ------ - .

6000 / G : 30 ]
3000 .=350 ------- . 20 /
M/ i ‘ 10 y

i I 1 .’/

0
0 5 10 15 20 U 0 10 20 30 40 50 60 70 80

0

Fig. 6. Punch force versus punch travel (left) and contours of the deformed sheet (right) for the spin descriptions ®? = 0 and (45) with
¢® = =350 of the Square Cup.
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Fig. 8. Von Mises stresses without (left) and with spin (right) of the Square Cup.
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Fig. 9. Rotation angles between eg’ﬂ and e? of the Square Cup (material rotations are not included).

spin are of lower magnitude than without plastic spin yielding the lower punch forces in Fig. 6 (left). These
lower stresses are caused by the rotation of the anisotropy directions, shown in Fig. 9, as it was also shown
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for the stretch test in Fig. 5. These rotations reach maximal values of over +40° and are located close to the
diagonal of the sheet.

5.3. Wrinkling of a Cylindrical Cup

In another sheet forming example the wrinkling and earing behavior shall be investigated. The geometry
of the tools are considered in the NUMISHEET 2002 benchmark (Fig. 10) where the punch has a radius of
50 mm and is rounded at the edge with a radius of 9.5 mm, the radius of the die opening is 51.25 mm and
rounded at the die opening with a radius of 7 mm. The punch stroke is given as 40 mm and the blank holder
force as 800 N. The sheet is of circular shape with a radius of 105 mm. The Coulomb friction with the
coefficient 1 = 0.15 between the sheet and tools is applied. As sheet material the same material as in the
previous examples were applied. The spin description (45) is used. As in the previous example only a
quarter of the sheet is discretized with the edges along the rolling and transverse direction. The FE mesh
contains 2104 elements.

The vertical displacements in mm and outer contour of the simulations in the final stage are presented in
Fig. 11. The amplitudes (the gap between die and blankholder without spin is 1.116 mm versus 0.951 mm
with spin) of the wrinkles are less pronounced with plastic spin and the higher frequency of the wrinkles is
higher with plastic spin. The earing effect is smaller with plastic spin as can be also seen in Table 6 where the
draw-in in the angles 0°, 45°, and 90° from the rolling direction is given. In this example the rotation of the
anisotropy axes (Fig. 12) gradually effects the flow stress in radial direction to approach the flow stresses in
rolling and transverse direction which can be also seen from the flow stresses of the tensile tests in Fig. 5.
The anisotropic deformation of this problem simulated with plastic spin is therefore less pronounced then

-1.00E+0C

-7.50E-01
-5.00E-01

-2.50E-01
0.00E+0C
+4.00E+01

Fig. 11. Vertical displacements (in mm) and contour of the Cylindrical Cup without (left) and with plastic spin (right).
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Table 6
Draw-in of the sheet
Angle from RD 0° 45° 90°
Draw-in without plastic spin (mm) 13.81 20.21 13.77
Draw-in with plastic spin (mm) 16.77 17.41 16.72
]
R
SR _
\\\\\\\\\\\\}\\\\\\ -3.12E+01
IR
-1.63E+01
-1.36E+00
+1.35E+01
+2.84E+01
+4.33E+01
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.47E+08
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Fig. 13. Von Mises stresses without (left) and with plastic spin (right) of the Cylindrical Cup.

without. Correspondingly, the stresses in the circumferential direction show less variation with plastic spin
(Fig. 13, right) than without (Fig. 13, left).

6. Conclusions

A relatively simple, but thermodynamically consistent, numerical treatment for the planar elasto-plastic
materials at large strains has been proposed, incorporating the plastic spin to describe the evolution of the
anisotropy directions. The spin formulation of Kuroda (1997) has thereby been modified to obtain a better
agreement with the experimental results of Kim and Yin (1997). Other common yield functions, like the
Barlat et al. (1991, 1997) yield functions used for the simulation of thin-walled elasto-plastic structures, can
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be easily incorporated in the presented numerical treatment. The assumption that the orthogonality of the
anisotropy axes is preserved, however, is a necessary basis of this approach.

Although the differences—resulting from applying the plastic spin or not—in the deformation of the
second example are of minor magnitude, the differences in the stresses are worth noting. These differences in
the stresses are caused by rotations of the anisotropic directions defining the elastic boundaries. Thus, the
deformed shape of the sheet will also result in a different structural response, particularly if the sensitive
springback behavior is considered, whether or not the plastic spin is used. A proper description of the
springback behavior (see Li et al., 1999; Geng et al., 2002 or Chun et al., 2002a), is considered to be es-
sential for a reliable prediction of the final shape of the sheet. Such predictions are preferably performed
with implicit algorithms and are not performed here. That the plastic spin can also affect the deformed
shape has been illustrated with the third example where the material spin/rotation can be almost neglected.
Considerable differences in wrinkling performance and earing behavior have been simulated.

Though the rotation of the anisotropy axes seems experimentally and theoretically well established, the
magnitude and the micromechanical origin of the different spin rates for aluminum and mild steel, however,
still pose open questions. Further investigations on the magnitude of the plastic spin would be also nec-
essary for other metallic polycrystal and high strength steel which may as aluminum exhibit a different
behavior than mild steel. Within hydroforming and multi-stage forming processes (e.g., Chun et al., 2002b),
strains over 80% can be obtained. For such large strains the low rotation rates of 5° at 20% observed in
Bunge and Nielsen (1997) and Truong Qui and Lippmann (2001) would effect the material behavior
considerably. At these high strains the assumption used here that the strains inducing the anisotropy of the
pre-existing preferred orientation is much larger than subsequent strains due to further deformation is not
valid. The symmetry planes may not be orthogonal anymore, the evolution of microstructures, like dis-
location walls and cells, may influence the shape of the yield function considerably, and the texture evo-
lution and thus the evolution of the anisotropy properties at such high strains will affect the anisotropic
properties not only in terms of rotations of the symmetry planes but also in terms of the yield surface shape.
The avail of the presented spin approach for such processes has still to be verified at such high strains.
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